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SUMMARY 

An Artificial Neural Network (ANN) classifier, based on fuzzy Min-Max [21], Adaptive 
Resonant Theory (ART) [2,5], and fuzzy ART [7,17] is described. The outputs of the 
classifier are fuzzy hypercubes representing functional categories of its input functions. A 
hypothesis and test paradigm compares input data and existing hypercube categories, and 
results in either network "resonance or dissonance," depending on the test outcome. A 
hypothesis is formed by two functions which measure the degree of match between input 
and each hypercube category. The hypothesis match functions are Degree of Inclusion, 
and Degree of Perfect Match. An overall hypothesis is chosen based on the best 
hypothesis, i.e., the hypothesis which has the greatest match. A test is then performed to 
verify the hypothesis. The test consists of both a vigilance, and overall hypervolume 
limit test. The vigilance test measures the top down match between the hypothesized 
category and the input. The overall hypervolume test ensures that any category 
adjustments keep the total category hypercube volume within bounds. 

Category representation is extended beyond a unit hypercube as in [21] reflecting the 
interpretation as a degree of typicality, rather than relative [18] to allow for more "noisy" 
feature hypercubes. The network has 7 layers; input, transform, process, hypothesize, 
test, functional, and category. The network is described in a hybrid neuronal-functional 
approach. 

The network was tested with standard classification test data for recogniton of speakers in 
an open set, text-independent environment. The standard sets were Iris and Wisconsin 
Diagnostic Breast Cancer (WDBC) [26]. The network produced 88% correct 
classification for WDBC and 76% for Iris. 

A speaker recognition system [12,13,14] using a fuzzy hypercube classifier was tested 
using the Switchboard [22] and Greenflag [23] data bases. The fuzzy hypercube ANN, 
characterizing one speaker per category, produced an average of 6.29 correct and 0.29 
incorrect categories out of a possible 8 total, with no prior training. The overall average 
correct classification produced by the network using a fixed set of signal features for 8, 
12, and 16 speaker groups was 67%. See [15] for details. 

Vll 



1. INTRODUCTION 

Classification is the process of labeling data as groups which are related by one or more 
common concepts. There are numerous approaches and definitions of classification in 
the literature based on statistical methods. See [8] for an introduction. Fuzzy methods in 
classification are developed in [1], along with categorization of classifier designs 
according to model, data, output, decision regions, algorithm, and architecture. In this 
report, we are concerned with designs which are based on the general hypothesize and 
test paradigm with data driven hypothesis formation [24]. Here the knowledge is 
decomposed hierarchically into "levels of analysis" [24]. 

The use of an Artifical Neural Network as a classifier, particularly for unsupervised 
learning, is based on the architectures of ART [2,3,4], fuzzy ART [6,17], and fuzzy min- 
max [21]. These all employ the general hypothesis and test paradigm, but are more 
neuronal "model-based" methods. In each the general processes of hypothesis generation 
are roughly maintained as a neural structure, and a testing mechanism is described as a 
somewhat complex feedforward/feedback functional control mechanism. 

A brief introduction to the basic and fuzzy ART functions, architectures, standard 
terminology, and equations will be presented next as background. Familiarity with basic 
fuzzy sets, fuzzy set theory and clustering is assumed. See Chapter 2 in [1] for 
introductory papers in fuzzy set theory and clustering, and Dubois and Prade [9] for 
further details on general fuzzy set theory. 

1.1 ART2 

A typical ART2 [14] network is composed of two layers (or fields) of neurons which 
form the Attentional Subsystem. The first field is the Feature Representation Field, or 
Fi, which contains processing elements (PE) that form three intra-PE sublayers which are 
responsible for processing one element in the input pattern. The main function of the 
feature representation field is to enhance the current input pattern's salient features while 
suppressing noise. 

The second layer in the attentional subsystem is called the Category Representation 
Field, or F2, which represents one category (or class) that has been learned by the 
network. The connections from a particular F2 neuron store a category pattern. ART2 
utilizes an unsupervised learning technique which attempts to discover the distributions 
and centroids of the categories for the patterns it is presented. ART2 can utilize a 
"winner-take-all" classification strategy, such as MAXNET [19]. Having selected the 
winner, an Orienting Subsystem is activated to determine whether the proposed winning 
neuron's Long Term Memory (LTM) traces sufficiently resemble the Short Term 
Memory (STM) pattern to be considered a match. A matching threshold called the 
Vigilance Parameter determines how similar the input pattern must be to the exemplar to 



be considered a match. If the degree of match computed by the orienting subsystem 
exceeds the vigilance parameter, a state of resonance is attained and the STM pattern at 
Fi is merged onto the winning neuron's LTM traces. Otherwise, the orienting subsystem 
sends a reset signal to the winning neuron, and inhibits it from competing again for the 
current input pattern. This search process is repeated until either an F2 neuron passes the 
vigilance test or all established F2 neurons have failed the test. In the latter case, a new 
category is established in the next available ¥2 neuron. 

Orienting 
Subsystem 

Figure 1. Basic ART2  Architecture 

Learning is competitive with each F2 neuron attempting to include the current input 
pattern in its category code. The actual learning process involves modification of the 
bottom-up and top-down LTM traces that join the winning F2 neuron to the feature 
representation field. Learning either refines the code of a previously established class, 
based on any new information that is contained in the input pattern, or initiates code 
learning in a previously uncommitted F2 neuron [2]. 

In either case, learning only occurs when the system is in a resonant state. This 
property ensures that an input pattern does not obliterate information that has been 
previously stored in an established class. 

1.2 Fuzzy ART 

The basic operation of "adaptive resonance" in the standard ART is simplified in the 
fuzzy ART. The basic equations which govern the fuzzy ART are based on the equations 
from the standard ART architecture, where the intersection operator is replaced by its 



fuzzy counterpart, the minimum operator. An introduction of the mathematics governing 
the fuzzy ART is given here, based on [4,5,6,7,25] 

The fuzzy ART system consists of three layers: the input layer (FO), processing layer 
(Fl), and output category (F2) layer. Associated to connections between layers Fl and 
F2 are a set of weights directed from Fl to F2. A fundamental difference between the 
Fuzzy ART and prior continuous versions is the simplification of the "resonance criteria" 
by use of only bottom-up weights in the matching process. The matching process 
consists of two vector matching operations: 

• Degree which input A matches output category c 
• Degree which category c matches input A 

The norm of a vector A, which gives an indication of its "size," is defined as 

Ml = IK I - (D 
The following three sections describe the fuzzy mathematical functions, operations and 
data structures associated within each of these layers. 

1) Input Layer 
Given an input vector A,  A = {cij} or optionally, with the complement 

A = {aJ,a
(j},     j = l,2,...,Nin (2) 

The addition of the complement of the input vector has the advantage that A is now self- 
normalized, using the definition of norm in Eq. 1: 

Mi=h.fly)i=Zfly+Z(i-fl/>=i=^ e> 
7=1 7=1 7=1 

2) Output Layer 
The output layer F2 consists of a set C of JVmax active categories, 

C = {Cj,...,cWmK} 

Each category vector c3 eC has an associated LTM weight set 

Wj ={wu,w2J,...,w2Ni^j} 

3) Processing Layer 
A category Choice Function Tj measures the degree which input A is a match to a Cj 

and its associated Wj : 

UnWA    \MIN(A,Wj)\ 
T

J=
} F-T = ^ T-ii (4) 

a + \Vj\ « + |K I 
where a > 0 is a choice parameter. 

T is the best category choice, and is calculated as the union of all Tj. 



T=\JTJ=M4X(TJ) (5) 
j J 

There are two cases which can occur once a category choice is attempted: 

Case 1. Equation 5 produces a choice J. A test is performed on the preliminary choice J 
to test if it meets a threshold criteria called the vigilance test, where the degree to which 
the preliminary category matches the input A is compared against a threshold p 

AnwA    \MIN{A,W,)\ 
 l~L- A>p (6) 

14 Nil 

If the vigilance criteria of Eq. 6 is not met, the preliminary choice [J] is said to be "reset," 
and another category choice according to Eqs. 4 and 5 is made from the set of active 
categories in C. 

If the vigilance criteria is met, then the system is said to be in a state of resonance, and 
the input A is incorporated into category J by the following: 

wT=ß{AAwf) + (l-ß)wf (7) 

Fast learning is said to occur when ß = 1. 

Case 2. Equation 5 produces no choice. If no category choice can be made, a new 
category CN+l is created in C with 

<r. = <! = A. (8) 

Initialization: N=0 

A simplified fuzzy ART architecture is described by Kasuba [17]. In the remainder of this 
report, we will describe a classifier based on ART2, fuzzy ART, simplified fuzzy ART, 
and fuzzy hypercube ART. Section 2 will introduce and define the fuzzy hypercube 
classifier. Section 3 will compare simplified fuzzy ART and fuzzy hypercube ANN using 
standard classification sets. Section 4 will give an application of the fuzzy hypercube 
classifier to Speaker Recognition, and Section 5 will briefly summarize the results. 



2. FUZZY HYPERCUBE ARTIFICIAL NEURAL NETWORK 

Modifications to ART and Fuzzy ART were done to: 
1) Improve performance since they generally suffered from poor noise tolerance 
2) Provide workable functional basis for hypothesis/test of neural systems 

The Fuzzy Hypercube ANN (FHANN) is a conceptual-neural model based on the 
following general features: 

1) Hypothesize and Test paradigm, 
2) Hypercube category (concept) representation 
3) Category Overlap 
4) Fuzzy Information representation and processing 
5) Information Fusion (optional) 
6) Category Match Test 
7) Hypervolume category limit 

An FHANN, which implements the above general features, will be described. First an 
overview will be given of the network layer structure, followed by a detailed description 
of each layer. Also, global category merge and ANN initialization are described. 

2.1 Fuzzy Hypercube ANN Structure 

The FHANN has seven layers of processing. Figure 2 shows the functional structure, 
interconnection, and data flows of the ANN structure. Notice the network bi- 
directionality in its processing and information flows. Specific category information is 
fed back to the Fusion and Transform layers for state-dependent information adjustment, 
and to the Functional layer to performing category adjustment and learning. 

The function of each of the seven layers in the FHANN is: 

Input: Input fuzzification, scaling, optional functional expansion 
Transform: Evaluation of category choice functions over active categories 
Fusion: Fusion to final ratings of category choice evaluation [Optional Config] 
Hypothesize: Choice of single hypothesis category 
Test: Pass/fail match test of hypothesis category 
Functional: Category creation, hypervolume adjustment, or category learning 
Category: Representation of clusters as fuzzy hypercube 

The FHANN has several distinct differences from the basic, fuzzy, and simplified fuzzy 
ART. It retains the basic data structures using A and x vectors. The concept of bottom 
up and top down match and the learning rule are different. 
Each of the layers are described in the following sections. A detailed view of the 
network is shown in Figure 3, where each of the blocks from Figure 2 is expanded to 
show more details. 
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Figure 2.   FHANN Layer 
Structure 
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2.1.1 Input Layer 

The Input layer has three inputs and 3 * Nin outputs. The inputs are vector A, scaling 
values for A, and enable/disable. The vector A and associated scaling generate fuzzy set 
representations of the input as "Feature Vector". The enable/disable inputs control the 
Input layer and overall network resonance/dissonance. 

2.1.1.1 Fuzzy Set Generation 
The input vector and its optional complement are described by Eqs. 2 and 3. 

A scaling function is defined based on the range of inputs between an expected minimum 
and maximum for each element of the input set A. The scaling function maps input 
values to the closed interval [0,1]. 

A discrete fuzzy set "Feature Vector" (FV) results from the set of mapped input values of 
A. This fuzzy set characterization is represented by a crisp set of individual membership 
functions s(a), one for each input feature value a. Note that this standard representation 
of a fuzzy set uses the plus sign to indicate the union of the elements. 

py = 
v(a') + ^"z) |    + ■n"K •v(aA';„ ) 

N,„ 



Figure 3.  FHANN Functional Diagram 



The function s translates input features into membership values. 

s(aj) 
°>      aj ^ FM..J 

Zj> FMinJ   < aj   -  Puaxj 

L       aj > FUaJ 

overall   j =\,2,-,Nin (9) 

where    z,=-   °J    ^ 
I PMaxJ       r'MinJ I 

Individual values of FMilfFMax   are initialized as either 
• Constants 
• Learned Variables 

A simple weighted learning procedure can be implemented to dynamically adjust the 

values of rMini FMax . Although, in this report, only constant values are used. 

2.1.1.2 Layer/Network Resonance/Dissonance Control 
The enable/disable input controls iteration/search cycling in the network. The network 
either continues to cycle with current input A when a suitable category is not found by the 
Hypothesize/Test layers, or stops cycling and begins processing of the current input, 
while enabling the acceptance of the next input. 

2.1.2 Category Layer 

The Category layer produces the output of the network and consists of a set of neurons 
with associated states and LTM weight values which descibe them. The LTM weights 
are described using a min-max feature hypercube representation of the associated J- 
categories defined by Simpson [21]. Strictly speaking, the categories are not hypercubes 
but "hyperboxes," since they do not have equal dimensions. 
The category layer C is a set defined by: 

C=[B
J
,N

J
,T

J
,S

J
),     J = l,2,..., N„ 

with BJ
 = {

V
J>
W

J}>   J = l2,...,Nin,   Vj.Wjem 
(10) 

where JVmax the total number of J-categories, JV/n is the j-dimensionality of the hypercube 
representation according to Eq. 2. 

The category layer consists of BJ as the hypercube representation of category J. BJ 

contains a jth dimensional description of Vj the minimum point, and W} the maximum 
point. Additionally, category J consists of: 

•    NJ is a count of category adjustments 



• TJ is an overall confidence 

• SJ is the state of category J 

2.1.3 Transform Layer 

FV values from the Input layer are passed to the Transform layer, where they are 
processed by a match function and generate a degree of match between the input A and 
each member of the output category set C. A membership of the input in each of the 
output category classes is produced. 

A wide range of choices is available for the matching functions such as those in ART2 or 
fuzzy ART (Eq. 4). Several authors examined various fuzzy match functions. Eq. 4 has 
been expanded by Carpenter and Gjaja [7] to Choice-by-difference, providing a more 
conservative learning. 

Tj = (\WJ\-\AAWJ\) + S(\IVWJ\-\WJ\) 

where e is analogous to a of Eq. 4. 

Simpson [21] developed a membership function which measures the average amount of 
max point and min point violations. He defines a function b which approaches 1 as the 
point approaches a hypercube, 

bh(Ah,Vj,WJ)=-±-j?[\-f(ahi-wji,y)-f(vJi-ahi,y)] 

where f() is the ramp function, 
r 1     if   xy>\ 

f(*,r) = xy     if   0 < xy < 1 

0     if   xy<0 

The variable y regulates the speed of membership decrease when an input is separated 
from a hyperbox core [21]. 

The idea of a smooth membership function which approaches one, as a point is within a 
target hypercube and steadily decreasing as it leaves the hypercube, has conceptual 
support. However, the function bb above does not provide a clear indication of goodness 
once inside the hypercube. 

2.1.3.1 Matching Functions. 
A general and exact hypercube match is formulated as the linear combination of two 
functions [11]. The functions measure fuzzy hypercube "Degree of Inclusion" (DOI) and 



"Degree of Perfect Match" (DPM).   They are combined to give a measure of the level at 
which the scaled input matches to each feature category hypercube. 

+■   x 

2.1.3.2 Degree of Inclusion 

u(x,y) 
DOI measures the level at which each 

* input Aj matches to the external dimensions 
i. o |  of» or is similar to, the j-th dimension of a J- 

category hypercube. 

This method is similiar in function to 
Simpson's [21]. A trapezoidal function is 
used as a model for a match which gives 
full membership when an element of Aj is 
included in a category, and less than full 
membership outside, depending on the 
distance to the hypercube. Figure 4 shows 

Figure 4. Trapezoidal Degree of Inclusion   the trapezoidal membership function. 

The set H, consisting of upper and lower fuzzification values is defined for each 
hypercube B J, as 

HJ ={BJ,LJ,MJ),   J = l,2,...,NMax 

LJ={Lj),    MJ = {Mj},   j = l,2,...,Nin (11) 

where the sets LJ, MJ represent the fuzzification sets for the upper and lower limits. 

The overall membership for DOI, ju D01 (A) is defined for each j-dimension of the 

subsets of HJ for hypercube J (Eqs. 10,11) as a trapezoidal function // ^OI (A). 

IF WjZajZVj tf° '(A) = 1 

IF Mj > aj > W, = \-{aj-Wj)y 

IF VJ >aJ>LJ = l-(V.-aj)r 

IF Lj > aj OR    Mj < aj = 0 

(12)" 

As a practical matter we set \lj - v J = \wj -mj\ = j to evenly fuzzify the hypercube. The 

value — is chosen as a constant range of "fuzzy" border around V and W for each value 
Y 

of A. 

The oveall membership function for the DOI, ju D01 (Ä), is defined as the following: 

10 



^'(^-L^f» (13) 
•** in     j 

Note that 0<£   //?0/ <Nb 

2.1.3.3 Degree of Perfect Match (DPM) 
The DPM measures how close an input is to the mean of each J-category. The measure 
of the distance from the mean of each dimension of Hj is defined as DPM. DPM is a 
resemblance relation between the input A and an individual J-category.  First, the mean 

MJ of a category J is defined. 

\v -W  / 
MJ ={mJ} = \ J       J/2  ,   j = \,2,...,Nin (14a) 

The dissimilarity is defined as the difference between the value A and the mean of the 

category J, MJ, 

Dissimilarity =\A- MJ | 

and for each j -dimension of A and MJ, 

Dissimilarity j = a; -m\ 

The similarity is taken as the fuzzy complement of the dissimilarity, 

Similarity = Dissimilarity1^ 

and, for each j-dimension element, we have 

Sim l: = 1 - \üJ - m}: | (14b) 

Using the mean and similarity from Eqs. 14a and 14b, the individual j-dimension 

membership functions for DPM, /i DjFM (a; j are defined as follows 

Hj    K J}    \l-\aj-mj\        if   Wj *Vj 

The overall membership function //DPM (A) for a single J-category is the mean of the 

sum of the individual values, 

Again, note that 0 < ^ pf" {fl}) < Nin  and jUjDFM(A) e [0,1]. 

11 



2.1.4 Fusion Layer 

The Fusion layer integrates the best knowledge in the network concerning the matching 
between the current input A and each of the current categories. The knowledge used in 
the matching process is the DOI and DPM from the Transform layer, as well as certain 
feedback category information that comprise the input to the Fusion layer. A fusion 
function R ■' is defined as the linear combination of the DPM and DOI that are 

dynamically weighted. The dynamic weighting is done to compensate for low DOI at the 
start of a hypercube matching cycle, and is based on the number of inputs representing a 
resultant category. 

RJ(Ä) = kJ
xM

Dr(A) + kJ
2Mf'(Ä) (16a) 

where 

k2
J = min(K * NC(J),l),        k( + kJ

2 = 1 (16b) 

and      RJ < 1 

0<K< 1, K constant 

The functions kf ,k2 are dynamic weight functions which give the relative importance of 

DPM and DOI to the value RJ. Note that DPM and DOI are weighted complementary, 

to allow for RJ < Nin. 

The node constant NC is a dynamic weight function dependent on NJ m Cj which is the 

number j of input vectors which are assimilated through learning into a J-category 
hypercube. 

NC(J) = 

0.65, NJ =\ 

0.85, NJ =2 

0.95, 7Vy=3 (17) 

1.00, NJ >3 

2.1.5 Hypothesis Layer 

Inputs from the Fusion layer form a hypothesis space from which a single winnning 
category hypothesis is either chosen or no winner is chosen meaning no current category 
fits the current input and a new category is then created. Hypotheses are formed and a 
Winner/No Winner is chosen by first finding the maximum over all the active J-category 

fusion values, RJ. An active category is one which has not yet been processed using the 

current input as a hypothesis; if it has already been processed it is marked inactive. 

Winner:     Cw = max{RJ} if   RJ  is   active and   RJ >0,     J=l,...,N 

12 



No Winner:   if   RJ   is   inactive,or   RJ < 0,     overall   J 

The resultant hypothesis "Winner" is passed with the winning category node to the Test 
layer, while a "No Winner" hypothesis is passed back to the Input layer to halt resonation 
of the network, as well as to notify the Functional layer to create a new category node for 
the current input A. 

2.1.6 Test Layer 

The Test layer performs a match test on the curent active winning category Cw as an 
input hypothesis. The value of R J

 associated with cw measures the degree of match 

between the category hypercube B J and the input vector A. A modified form of the 
vigilance test (Eq. 6) is performed as shown in the following equations to measure if the 
current hypothesis passes the vigilance threshold. 

RJ    >   padj (18) 

where 
padi = pNC(J) (19) 

and NC(J) is described by Eq. 17. 

Additionally, any current category which fails the vigilance test is inhibited from 
competing with the current input by making it inactive. 

2.1.7 Functional Layer 

The Functional layer performs a series of services on the Category layer including 
Hypervolume Measure, Hypervolume Test, Hypervolume Adjust, Hypercube Learning, 
and Hypercube Creation. 

2.1.7.1 Hypervolume Measure 
There are two methods described to calculate hypervolume: by a product and by a sum. 
The product hypervolume, Phv, which corresponds to the "geometric" interpretation of 

volume, is found by the product of the "length" in each dimension of Bj. 

Phv=\f[(Wt -V,)\ (20) 
;=1 

where  0<Phv<l 

The product measure, however, does not allow for much expansion in the measure of a 
hypercube with variable length concepts or inclusion of noise, etc. Another measure of 
the hypervolume which increases the effect of each dimension is the unweighted sum of 
each of the hypercube dimensions, Shv, 

K 
Shv = Y,\Wi-Vt\ (21) 

where  0<Shv<Nh, 
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2.1.7.2 Hypervolume Test 
Hypervolume limit testing and adjustment are necessary for the stability of the network. 
In FHANN, for each J-category, the hypervolume measure is constrained to be less than a 

maximum limit, 0max. The hypervolume 0 of a hypercube is bounded to keep it from 
expanding to infinite volume. 

O<0^©max      fareachJ   J=l,...,Nma (22) 
where the operation which determines 0 is selected from the set of hypervolume 
measure operations defined by Eq. 19 or Eq. 20. 

0 ={Phv,Shv} 

2.1.7.3 Hypervolume Adjust 
If the limit 0max is exceeded, the category hypervolume is adjusted. The excessive 
volume A0 is found from the current hypervolume, 0, by the following: 

|Y©-0    )/N.       0>0 ^0_JV v max ,/'■" in ^ ^ '"max OW 

\ 0 Otherwise 

where Nin is the current input dimensionality as in Eq. 11. The hypervolume of category 
J is adjusted whenever A© > 0 by 

W'Jew = max{(Wfd - A0 / 2),0} 

Vn™ = mm{(Vfd + A0 / 2),1} (24) 

This operation brings the hypervolume measure of category J within the value of 0max 

as required by Eq. 22. 

2.1.7.4 Hypercube Learning 
The inclusion of input A into the winning category hypercube Bj is done through a 
learning algorithm which adjusts the category J hypercube. In general, each feature of A, 

üj, selectively adjusts its respective limits in W; and V; through the following hypercube 

learning algorithm. A learning adjustment factor r is used to set the algorithm's rate of 
learning. 

Hypercube Learning Algorithm. Given an input vector A, a hypercube Bj5 and a learning 
adjustment factor r, learning is performed for each dimension of A. 

1. Determine if input is inside or outside of interval Bj 
2. DO: Respective Case 1 or Case 2 and subcases below. 

Case 1: Input is outside of interval Bj 
Case 1.1 Input above Wj: Increment W upwards 
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IF   at>W^THEN   Wf" =Wf+r(a, -Wf),   V"ew =Vold 

Case 1.2 Input below V,: Decrement V downwards. 

IF   a, < Vf THEN   VT = V°Jd + r(a, - V°Jd),   Wnew = WM 

Case 2:   Input is inside of interval Bj 
Case 2.1 Input is closer to V; move W closer in to V. 

IF{au>Vf    AND   a, <Wf AND   Wf-a,^a,-Vf) 

THEN   W'jr =Wj°!d -r(Wf -a„),   Vf" =V? 

Case 2.2 Input is closer to W; move V closer to W. 

IF (a, > Vjf    AND   a, < Wf AND   a, - Vf > Wf - a,) 

THEN   Vr=Vf +r(a, -Vf),   W™w =Wf 

2.1.7.5 Hypercube Creation. 
The creation of a hypercube requires that the overall hypervolume limit is adjusted 
through the hypercube dimension, hd^, which is defined as the maximum hypercube 
dimension, assuming equal size in each dimension: 

hd     =^ (25) max -J.T 
in 

Upon Creation: 
1. Initial settings are equal. 

wr=vr=a, 
2. Number of active J-categories is incremented by one. 

^max=^max + l 

2.2 Auxiliary Network Functions 

The FHANN has optional and required auxiliary functions. The required functions 
include FHANN Initialization of system, and FHANN parameter initializations. Optional 
function is the Global Category merge which was tested, but results are not reported here. 

2.2.1 Category Merge 

A global merge is defined as a combination of hypercube cluster classes produced by the 
FHANN which are very "close" to one another. This operation is performed outside of 
the neural network processing and does not affect any of the internal operations of the 
network. It does utilize detail parameters generated by the network. 
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This process occurs over time between FHANN cycles and can be considered a long term 
averaging process. There are two measures which are used to indicate whether a global 
merge is to take place: 

a) Volume difference between hypercube categories and 
b) Magnitude of rating R from Eq.16 between two categories. 

The volume parameter is defined as follows: 
Njn x A < volume (26) 

The value Nin  is the number of input nodes and A the hypervolume per node. 

A category merge function is defined. First, merge parameters are obtained over all 
possible different pairs of the current categories defined. Next, the merge criteria are 
applied and partition current categories into a final set which is compacted. [Note that 
during testing, the compacting occurred very rarely]. The criteria are expressed in terms 
of acceptance/rejection regions in the volume difference/rating mapping. 

0.0 <Avol(cl,c2)<U0 and   R(cl,c2)>l.OO     OR 

U<Avol(cl,c2)<\.50and   R(cl,c2) > 1.00     OR (27) 

1.5 < Avo/(cl.c2) < \.15and   R(cl,c2) > 1.40 
These were experimentally derived and were only used to evaluate the concept of global 
clustering criteria within the context of the hypercube structure. 

2.2.2 FHANN Initialization 

The initialization is performed on the FHANN as follows: 
Step 1. Enable all categories, set count, and confidence is "none". 

NJ =0,   TJ =none,     SJ= enabled 

Step 2. Set available category count to zero. 

Nami,=0 

2.2.3 FHANN Parameters 

The FHANN contains several variables and parameters which are under the control of the 
designer of the system. The parameters are to be set before NN execution, and are as 
follows, with references to defining equations: 

PI: Size of input layer, Nin (Eq. 2) 

P2: Maximum number of output categories, ATmax(Eq. 10) 

P3: Complement of input A in input layer (Eqs. 2, 3) 

P4: Maximum, minimum input scaling values in A, F^F^     (Eq. 9) 
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P5: Hypercube fuzzification, I, for fuzzy border around each a} (Eq. 12) 
Y 

P6: Fusion function weight, K, the fraction of DPM (Eq. 16b) 

P7: Base value of vigilance, p (Eq. 19). 

P8: Hypervolume maximum, hvmm (Eq. 22) 

P9: Learning adjustment factor, r (in Hypercube Learning Algorithm) 

P10: Hypercube Measure Type (Eq. 19 or Eq. 20) 

One optional parameter, if known, is: 

01: Known Number of input classes, Ndms 

3. NETWORK COMPARATIVE PERFORMANCE ANALYSIS 

The performances of fuzzy ART and the FHANN are compared using two standard 
classification data sets: Iris Flower and Wisconsin Diagnostic Breast Cancer. A 
simulation of the FHANN's was made using MATLAB. This section provides details on 
the structures for the simulator and results of the comparative testing performed. 

3.1 Test Measurement Definitions 

Test data items which are measured to quantify the performance of the FHANN's are 
defined in this section. Note that for all data tested, the correct responses are known but 
are used only in the calculation of the ANN performance. 

The definitions for CC, TC, and IC are test measurements made on the FHANN's of the 
number of categories created by the networks. 

CC="Correct Category": Count of categories containing data designated as 
correctly classified. 
TC="All Created Categories": Count of all categories created 
IC=TC-CC="Incorrect Categories": Count of categories containing data 
designated as incorrectly classified 

The definitions for the following are test measurements made on the FHANN's of the 
number of input data elements placed in the various classes defined as CC, TC, or IC. 
The prefix function "D" indicates the measure of data in a specific category. 

D="Data": Function indicating individual data sets in a specific class/category. 
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D(CC)=Data in Correct Category 
D(TC)=Data in All Created Categories 
D(IC)=Data in Incorrect Categories 

Correct Classifications Vs Incorrect Classifications in "Correct Categories" 
One measure of the performance of the FHANN being used is the fraction of how many 
of the data in the created categories are correct or incorrect, with respect to the sum of the 
correct and incorrect data input to the system. These are defined by Eqs. 28 and 29. 

P«=2>(CC) + Z)(/C)} (28) 

^{D(CC) + D(IQ} 
P* = Vrrwv^      n,r^ (29) 

Note that /»£ nP£=0 

Correct Classifications Vs Incorrect Classifications in "All Created Categories" 
A measure of the performance of the FHANN in all categories is a measure of the 
fraction of how many of the data that are in correct or incorrect categories, with respect to 
all the data input to the system. These are defined by Eqs. 30 and 31. 

2>(CC) 

P*c = ZD(TQ (30) 

P- = v7^ (3D 

Note: The following inequality may exist due to the fact that several potential categories 
may have been eliminated prior to classification: 

D(TC)>D(CQ + D(IC) 

Total Count of Incorrect Categories 
This measure is the absolute number of incorrect categories created. It gives an 
indication of the degree of useless categories which the network creates for a given set of 
conditions. It is given by Eq. 32. 

P,c=I,IC (32) 



Correct Vs. Incorrect Categories 
A measure of the performance of the FHANN, with respect to the number of correct 
categories it creates and the number of categories created, is measured as a fraction of the 

number of correct categories, if the value of Nclass is known. It is given by Eq. 33. 

Ice 
PC

N
C =  (33) 

N iv class 

Likewise, for number of incorrect categories, Eq. 34. 

/£=-^- (34) 
N ^ class 

3.2 Function Descriptions 

The analysis was performed using a system running under MATLAB with the following 
functions: 

(1) Anode: Creates an output node for ANN. An output node contains: category number 
(Cat), count of adjustments (Nj) and B. Nj is initialized to one, the max points W to zeros 
and min points V to ones. Category number is equal to the number of categories. 

(2) Volume: Calculates the volume of a hypercube. The volume is defined as the sum of 
all sides of a hypercube (Eq. 21). 

(3) Min-max: Finds minimum and maximum values of each input feature from an input 
data file (Eq. 9) 

(4) Scale: Scales input vector to be within [0,1] (Eq. 9). 

(5)NC: Generates node constants for different Nj's (Eq. 17). 

(6) DOI: Calculates degree of inclusion (Eq. 13). 

(7) DPM: Calculates degree of perfect match (Eq. 15). 

(8) Adjust: Adjusts vector B so that the overall hypercube volume is within limit 
(HV_max). It requires two inputs: Vector B, and the difference between the max and the 
actual volume Delta (Eq. 23). 

(9) Learn: Updates and returns the values of B (which contain the min (V) and max (W) 
of the hypercube) using input vector A. 

(10) Trans: Transforms input data into a membership function R using DOI and DPM 
(Eq. 16a). 

(11) Test: Performs a match test (Eq. 18) on the input vector and category input 
hypothesis. 

(12) Stat: Calculates the statistics of the output and does some output routines. 
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3.3 Main Program Description 

Interactive input values are requested for Vigilance, Gamma, Learning Adjustment Factor 
r, K (in Eq. 16b) and maximum hypercube volume 0max. 

The input data file which contains the feature vectors is then scanned using Function 
Min_Max to obtain FmafFmin the maximum and minimum values. These are used to scale 
the input data set using the Function scale. 

The first data set is read and classified as category one. An initial output node is created 
for this data set using Function Anode. Once a node is created, the number of nodes 
(Num.) is incremented by one. A scan loop reads input feature sets from the input file 
until an end of file is detected. 

Inside the scan loop, data sets are read and scaled. The scaled input data goes through the 
transform layer using Function Trans which takes the input vector and generates a 
membership vector R. Values of vector R are then sorted in ascending order. The 
category node which has largest R value is the current winner. 

No Match 

Create 
New 

Category 

The input data set is set at the 
winning category node. A match 
function is performed against the 
input data and the winning 
category's maximum and minimum 
points using the Function test. 

If it matches, then a hypercube 
volume test is performed to see if it 
is within the specified maximum 
hypercube volume. If not, the min 
and max points are adjusted. The 
winning category node learns the 
input data through the Function 
learn. If it does not match, that 
winning category node is disabled 
and the category node with second 
largest R value is activated. 

The process continues until the last 
category node is encountered with 
no match. At this point, a new 
category node is created for that 
input data set. 

Figure 5. 
FHANN Functional Block Diagram 
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Figure 5 shows the Main program's Functional block diagram. For a more detailed 
description, see the Main program's flow chart in Figure 6. 

|Open  Input/Output  Files 
FIGURE 6. 

FHANN Main Program 
Flowchart 

Read: Vigilance, 
Gamma,r,k,Hv max 

User 
Input 

Min_Max; 
Read input 
a;Scale(a); 

Init 

Create 1st Node 
Num = Num+1; 

Read Input a 
Scale(a); 

Read data 

£ 
Node = l; 

/* Transform Membership Function */ 
R = Trans (B (Node) ,a,Nj (Node) ,Gamma,k) 

[Match,B,Nj,Out_Cat]=Test_hyp(a,R,B,Nj,Hv 
max,Vigilance,r) 

Hypothesize 
/test 

/* Create new category */ 
B(N Nj(Num)=anode(a,num) 

Create 
category 

Y:  Exit 
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3.4 Testing Methodology 

The FHANN was tested using a parametric testing method. A set of baseline values was 
chosen and the program was run while varying a single parameter in the baseline and 
keeping the others constant. The purpose was to see the effects of one variable on the 
output of the network. The data files that were used as inputs were: iris.dat (a 3-feature, 
150-cases of the Iris flower classification set) and WDBC.dat (a 2-feature, 569-cases of 
the Wisconsin Diagnostic Breast Cancer). 

For each run, the following measures of performance were generated and graphed: 
- Percentage of correct classification in all classes (Eq. 28) 
- Percentage of correct classification in correct classes (Eq. 30) 
- Number of incorrect classes formed. 

From results of the parametric test, the best value for each parameter was chosen to 
maximize the output of the network. 

For Iris.dat, the following optimal output was obtained: 
- Percentage of correct classification in all classes: 76% 
- Percentage of correct classification in correct classes: 79% 
- Number of incorrect classes formed: 1 

when Gamma = 5; Vigilance = 0.7; r = 0.18; k = 0.1; Hv_max = 1.5 

For WDBC.dat, 
- Percentage of correct classification in all classes: 88% 
- Percentage of correct classification in correct classes: 90% 
- Number of incorrect classes formed: 1 

when Gamma = 5; Vigilance = 0.6; r = 0.1; k = 0.1; Hv_max > 0.5 

Figures 7 and 8 show a sample run of the output from the network. A confusion matrix is 
generated for each case where columns are the actual input categories and rows are the 
output categories formed. Fig. 9 plots the percent of correct, number of correct 
classifications, and number of correct categories versus vigilance for both iris.dat and 
WDBC.dat. 

3.5 Comparison Between SFAM and FHANN 

Simplified Fuzzy ART Map (SFAM) [17] has higher percentage of correct classifications 
than FHANN in the Iris case and about the same in WDBC case. However, the numbers 
of incorrect classes, NJncor, are much higher for SFAM over FHANN in both cases. 
This occurs because SFAM is more scattered than FHANN as it is more sensitive to 
changes in the input features. FHANN appears more stable, displaying greater 
insensitivity to noise in the input features 
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INPUT DATA FILE: iris.dat 
Vigilance = 0.700000 
Gamma =5.000000; k = 0.100000 
Learning adjustment factor r = 0.180000 
Maximum hypercube volume = 1.500000 

Confusion matrix: 

Out    1 3    Total   Percent 

1 50 0 0 50 0.33 
2 0 29 43 72 0.48 
3 0 21 2 23 0.15 
4 0 0 5 5 0.03 

Total: 50    50     50     150 
Percent: 1.00 0.42   0.86 1.00 

Number of correct classifications: 114 
Number of incorrect classifications: 36 
Percentage of correct in all classes: 76/100 
Percentage of correct in correct classes: 79/100 
Percentage of correct classes: 100/100 
Number of incorrect classes: 1 

Figure 7.   FHANN's Optimal Output for Iris.dat 

INPUT DATA FILE: WDBC.dat 
Vigilance = 0.600000 
Gamma = 5.000000 ; k = 0.100000 
Learning adjustment factor r = 0.100000 

Maximum hypercube volume = 1.000000 

Confusion matrix: 

Out 1 2 Total Percent 

1 157 16 173 0.30 
2 39 341 380 0.67 
3 16 0 16 0.03 

Total: 212 357 569 
Percent: 0.74 0.96 1.00 

Number of correct classifications: 498 
Number of incorrect classifications: 71 
Percentage of correct in all classes: 88/100 
Percentage of correct in correct classes: 90/100 
Percentage of correct classes: 100/100 
Number of incorrect classes: 1 

Figure 8.    FHANN's Optimal Output for WDBC.dat 
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Figure 9.    FHANN and SFAM comparison 
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Figure 9. FHANN and SFAM comparison (Contd) 

4 SPEAKER RECOGNITION TEST 

This section describes specific testing of the FHANN for recognition of speakers. 

4.1 Introduction 

Speaker recognition from speakers' voices requires a clustering/classification process 
which can group signal feature representations of the voices into reliable speaker groups. 
The clustering/classification should be able to form any number of classes dynamically, 
and tolerate the noisy and overlapping domain of speakers' feature vectors. ART 
architectures did not perform well during prior speaker recognition testing [13,14,16]; 
hence, the fuzzy hypercube classifier was employed in this test in an attempt to overcome 
this and other problems. 

There were two speaker data sets used for the formal testing of the system, the 
Switchboard [22] and the Greenfiag [23]. Switchboard data consists of 26 speakers and 
Greenflag 41 speakers in a tactical environment. Both data sets were interfaced using the 
NIST/SPHERE V2.2 software. Speaker test data were grouped into non-overlapping sets 
of 8, 12, and 16 speakers. 
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The Feature Processor is described in detail in [15]. Features were analyzed for two 
characteristics, separability, and maximum / minimum values. For an introductory 
background in this area, see Pellisier [20]. This report deals only with the classification 
performance of sets of input features provided by the Feature Processor. 

There were a number of fixed and varied parameters corresponding to specific 
subsystems [15]. 

FHANN-Variable Parameters 
Vigilance 
Maximum Hypervolume 

Overall System Variable Data and Parameters 
Test Data Sets 
Number of Speakers 
Number of correct and incorrect classifications per Test Set 

4.2 Speaker Testing 

The following are defined parameters which were measured during the speaker testing. 

1. Average, Minimum, and Maximum of Total Number of Actual Speakers Correctly 
Identified. Using P£c from Eq. 28, the average is defined as: 

_   Zi& 
/>C         ^ tests  s^ A\ 

CC   -  —Tr  (34) 
N tests 

where D{CC) > 1 in Eq. 28, and N,esls are the total number of speaker recognition tests 
performed. The Minimum and Maximum are defined as: 

Min(P£c),      Max(P£c)over   all Nlesls (35) 

Figures 10 and 11 both display the Average, Minimum, and Maximum of P£c as a 
function of the vigilance parameter and the maximum hypervolume [within a small range 
of values.] 
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Figure 10. Percent of Correct Classification vs. 
Vigilance Values 
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Figure 11. Percent of Correct Classification vs. 
Hypervolume Values 
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2. Average, Minimum, and Maximum of Total Number of Actual Speakers Incorrectly 

Identified. Using P,cc from Eq. 29, the average is defined as: 

Ii 
ric N,. 

(36) 

where D(IC) > 2 in Eq. 36. The Minimum and Maximum are defined as: 

Min(Pfc),      Max{Pfc)over   allNu (37) 
3. Average, Minimum, and Maximum of Spurious Categories1 Generated. Test values 

are generated using P^ Eq. 33 with the condition D(IC) < 2: 

P" = rIC N„ 
(38) 

1 Spurious Categories are speaker categories with a maximum of 1 or 2 entries over all 
time.  This is extended to time-dependent spurious categories where the entry count 
decreases fractionally and is proportional to age. 
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where D(IC) < 2 in Eq. 38 and 39. The Minimum and Maximum are defined as: 

Min{PjNc),      Max(P£)over   allNtt (39) 

Figures 12 and 13 display spurious speaker category creation in the network as a function 
of vigilance parameter and maximum hypervolume. 

Figure 12. Number of Spurious Categories vs. 
Vigilance Threshold 
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Figure 13. Number of Spurious Categories vs. 
Maximum Hypervolume 
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4. Average, Minimum, and Maximum of the Number of Correct Speaker Categories is 
defined as: 

       PN 

PN _ rcc 
1 rr   — lCC N., 

(40) 

Min(Pc
N

c),      Max(Pc
N

c)over   allNu 

Figures 14 and 15 show the development of correct speaker categories for the 8 speaker 
test. 
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Figure 15.   Number of Correct Categories vs. 
Maximum Hypervolume 
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Summarized test results for the FHANN performance are shown in Tables 1 and 3 for the 
8 speaker tests, and Table 2 for the 12 speaker tests. 

TABLE 1.     FHANN, 8-Speaker Test 

Test Data Set for 8 

Speakers 

Average Number of   Average Number of   Average Number of 
Correct Categories    False Categories       False Categories 
Generated (8 max)     Generated (8 max)     Deleted per Data 

Set 
Switchboard May 95 
Greenflag 

6.29                          0.29                          1.86 
6.57                           0.23                           5.77 

TABLE 2.    FHANN, 12-Speaker Test 

Test Data Set for 

12 Speakers 

Total Number of         Total voiced Speaking   Overall Correct 
Speakers in Test          Time (mins)                  Classification (%) 

Switchboard May 95 
Greenflag 

12                                  16.71                          67.25 
23                                4.77                           68.75 
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TABLE 3.    FHANN, Summary of Test Results 
Test Data Set for 8 
Speakers 

Switchboard May 95 
Greenflag 

Total Number of 
Speakers in Test 

26 
41 

Total Voiced 
Speaking Time 
(hrs) 
2.69 
2.96 

Overall Correct 
Classification (%) 

69.7 
70.3 

Percent Correct 
Classification 

95 

85 

75 

65 

55 | 

45 

35 

I i M 
■+- 

♦ Minimum 

■ Mean 

• Maximum 

12 3 4 5 6 7 8 

Figure 16. Percent correct vs. Greenflag Test Groups 
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Figure 17. Percent correct vs. Switchboard 95 Test Groups 

A breakout of the Switchboard and the Greenflag individual test groups is shown in 
Figures 16 and 17. Here the results are given for each group individually, with associated 
absolute minimum, maximum and mean. Values are derived using Eq. 34 and Eq. 35. 

The overall system test results are shown in Table 4. This includes all speaker groups. 
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TABLE 4.    Overall System Test Results 

Test Data Set for 
all Speaker 

Groups 

Total 
Number of 
Speakers 

Total Voiced 
Speaking Time 
(hrs) 

Overall 
Correct 
Classification 

Standard 
Deviation 

(avg) 

Maximum- 
Minimum 
(avg) 

Switchboard [14] 
Greenflag [15] 

26 
41 

3.0 
3.0 

66.9 
66.6 

5.0 
6.6 

14.5 
13.4 

4.3 Test Results Discussion 

The speaker tests performed in the previous section will be described. They will be 
grouped into ANN Tests and Overall System Test. The Overall system test included the 
testing of the Feature Processor with the FHANN. 

4.3.1 FHANN Specific Tests 

FHANN parameters modified during testing were maximum hypervolume and the 
vigilance parameter. In Figures 10 and 11, the effects of the hypervolume (HV) and 
vigilance on the system performance are demonstrated for a very limited set of values. 
The bar charts indicate that the HV mean value does not change much, but the spread 
between the maximum and minimum increases with increasing hypervolume. Thus, one 
would like to keep the HV as small as possible, while maintaining an acceptable 
classification performance level. 

Spurious categories are displayed in Figures 12 and 13. Here an increase in vigilance 
produced an increasing number of spurious categories, as well, and wider swings on the 
maximum and minimum values. This makes sense since increasing the vigilance 
produces a more "specific" network, and hence more extra category nodes would seem to 
be created under these conditions. The effects of hypervolume, in contrast, seemed to 
have little effect on the spurious category creation. 

The bar chart in Figure 14 shows a slight decrease in the number of correct speaker 
categories with an increase in vigilance, but a narrowing of the max/min values. For the 
hypervolume, in Figure 15, there is a slight decrease also, but not as clear as that for 
vigilance. 

Figures 10 to 13 relate vigilance and hypervolume to the number of categories generated 
in the category layer in the network, both correct and spurious. In the case of vigilance, 
there is a slight downward trend to performance for a correct number of categories, and a 
strong positive increase in the number of spurious categories generated as it increases. 
In the case of hypervolume maximum, increasing values have little effect on the number 
of correct categories and spurious categories. 
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Note that the tests should not be used to draw generalizations over the entire data space 
due to the fact that data sets are narrow in range. 

4.3.2 Overall System Tests 

Overall testing results are shown in Figures 16 and 17 and Tables 2 to 4. In Figures 16 
and 17, system performance is plotted for each speaker group, and is shown for its mean, 
minimum, and maximum. The results are synopsized in Tables 2 and 3, giving the 
standard deviation averaged over all groups for each group, as well as the maximum to 
minimum value spread averaged over all the groups. 

From these data, it can be seen that Greenflag had a smaller minimum to maximum 
spread, and, with the exception of group number 7, all appear well behaved. In the 
switchboard case, the spread is much more in all groups with group number 13 the 
greatest. However, the switchboard data was still more well behaved and better clustered 
as is shown by its smaller standard deviation in Table 4. 

The performance of the test groups is nearly identical at 67% for an 8 speaker group 
maximum. 

5. CONCLUSION 

A seven layer neural network architecture is described which performs a hypothesize and 
matching test between an input vector and a fuzzy hypercube category representation of 
the input vectors. 

The network has a variable hypervolume limit to accommodate noisy feature hypercubes. 

Testing was performed to compare the fuzzy hypercube classifier with fuzzy ART using 
Iris Flower and breast cancer standard data sets. The fuzzy hypercube classifier displayed 
better tolerance to noise in these tests. 

The fuzzy hypercube classifier was also tested with Switchboard and Greenflag data sets. 
The performance for 8 speaker groups is 67% overall correct classification. 
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Appendix A1 - MATLAB Toplevel Code Listings of SFAM 

o^*************************************************** 

%* Simplified Fuzzy ArtMap (SFAM) program * 
%* Programmer: Hai Phu * 
%* Date: 22/08/96 * 
%* * 
%* Input data file: Iris.dat * 
%*    Output data file: Out.dat * 
o^* ************************************************* * 

clear; 
Infile = 'h:\matlab\iriscnvt.dat'; 
Outfile = 'h:\matlab\sfam\out.dat'; 

fidin = fopen(Infile); % Open a input data file 
fidout = fopen(Outfile,'w');       % Open an output file 

today = date; time = clock; 
fprintf(fid_out,'DATE: %s  %2d:%2d\n',today,time(4:5)); 
fprintf(fid_out,'INPUT DATA FILE: %s \n\n', Infile); 

o/0 ******************** start 0f program ******************** 

m = iris_mm(fid_in); 
1 = 0; 
Vigilance = .1 
while Vigilance <= .9 

1 = 1+1; 
status = fseek(fid_in,0,'eof);    % set indicator to end of file 
eof=ftell(fid_in); 
status = fseek(fid_in,0,'bof); % reset indicator to beginning of file 

% Initialization 

Numnodes = 0;  pos = 0; 
wrong = 0; 
count = 1; 
Category = 0; 

%******************* Read first data set ******************* 

Data = fscanf(fid_in,,%3f%3f %3f%3f%d/n'); 
a = Data(l:4)'; 
InCat(count) = Data(5) + 1; 
OutCat(count) = 1; %first data is categorized as one 
pos = ftell(fid_in); 
b = scale(a,m); % scaling the input 
Numnodes = Num_nodes + 1;     % create an initial output node. 
[Category(Num_nodes), w(Num_nodes,:)] = fnode(b,Num_nodes); 
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%********** Reading input data till end of file ************* 
while pos < eof 

count = count + 1; 
Data = fscanf(fid_in,'%3f%3f %3f%3f %d/n'); 
a = Data(l:4)'; 
InCat(count) = Data(5) + 1; 
pos = ftell(fid_in); 
b = scale(a,m); % scaling the input 

0/o *************** Hypothesize input data ****************** 
[node,i] = hypo(Num_nodes,w,b); 

0//o ****************** Test hypothesis ********************** 

[w,switch,Out_Cat(count)] = Test_hyp(node,i,w, Vigilance); 

o^***************** QreaiQ new category ******************** 

if-switch % if never seen this category before 
Num_nodes = Numnodes + 1;  % then create an output node. 
[Category(Num_nodes) , w(Num_nodes,:)] = fnode(b,Num_nodes); 
Out_Cat(count) = Num_nodes; 

end; 
end % end while eof 

c^******************** Output routine ********************** 

fprintf(fid_out,'\n Vigilance = %f\n', Vigilance); 

[Pc_ac(I) Pc_cc(I) TJncor(I)] = stat2(In_Cat,Out_Cat,fid_out); 
%print out statistics 
Values(I) = Vigilance; 
Vigilance = Vigilance + .1 
clear w Category node; % clear out all vars for next run 

end % end while Vigilance 

plots(Values,Pc_cc,T_Incor,Pc_ac) 
fclose(fidin); 
fclose(fidout); 
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Appendix A2 - MATLAB Toplevel Code Listings of FANN 

0/*********************************************** 

%* Fuzzy Hypercube Artificial Neural Network program * 
%* Programmer: Hai Phu * 
%* Date: 22/10/96 * 
%* * 
%* Input data file: Iris.dat * 
%* Output data file: Out.dat * 
0/********************************************** * 

clear; 
Infile = 'h:\matlab\iriscnvt.dat'; 
Outfile = 'h:\matlab\h_annl\out.dat'; 

fidin = fopen(Infile); % Open a data file 
fidout = fopen(Outfile,V);       % Open an output file 

today = date; time = clock; 
fprintf(fid_out,'DATE: %s  %2d:%2d\n',today,time(4:5)); 
fprintf(fid_out,'INPUT DATA FILE: %s \n\n', Infile); 

o/0 ******************** §{^{ of oroeram ******************** 
o^********************** User inputs ************************ 

runs = 0; 

Vig = input('Enter a value for vigilance >'); 
Gamma = input('Enter a value for gamma > '); 

r = input('Enter the Learning Adjustment Factor, r >'); 
k = input('Enter a value for k > '); 

Hv_max = input('Enter the maximum hypercube volumn >'); 

while Hv max <= 1.5 

runs = runs + 1 
0/*********************************************************** 

m = mm_iris(fid_in); 

status = fseek(fid_in,0,'eof);    % set indicator to end of file 
eof=ftell(fid_in); 
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Status = fseek(fid_in,0,'bof); % reset indicator to beginning of file 

% Initialization 

Num = 0; 
count = 1; 

o/0******************* Reacj fjj.st £jata set ******************* 

%read_iris; 

Data = fscanf(fid_in,'%3f %3f %3f %3f %d /n'); 
a = Data(l:4)'; 
In_Cat = Data(5)+l; 
pos = ftell(fid_in); 

a = scale(a,m); % scaling the input 

Num = Num + 1;    % create an initial output node. 
[B(Num,:), Nj(Num)] = anode(a); 
Out_Cat(count) = 1; %first data is categorized as one 

%********** Reading input data till end of file *********** 

while pos < eof 
count = count + 1; 
Data = fscanf(fid_in,'%3f %3f %3f %3f %d/n'); 
a = Data(l:4)'; 
InCat(count) = Data(5) + 1; 
pos = ftell(fidin); 

a = scale(a,m); % scaling the input 

0/o *************** Transform/Fusion layer ****************** 

for category = 1 :Num 
R(category) = Trans(B(category,:),a,Nj(category),Gamma,k); 

end; 

0/o ************** Hypothesize and test layer *************** 

% Test an hypothesis; function test_hyp 
[winner,node] = max(R); 
Adj = Nc(Nj(node))* Vig; 
Out_Cat(count) = node; 
Match = winner > Adj; 

o/0 ********************** Leam ************************ 

if Match 
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B(node,:) = learn2(a,B(node,:),r); % Hypercube learning 
Nj(node) = Nj(node) + 1; 

0/ ********************** Adjust *********************** 

Shv = volume(B(node,:)); 

if Shv > Hv_max % if volume exceeds Hv_max then 
delta = (Shv - Hv_max)/Num 
B(node,:) = Adjust(B(node,:),delta); % adjust Hypervolume 

end; 

o/**************** * (^j-gate new category **************** 

else % if never seen this category before 
Num = Num + 1; % create an output node. 
[B(Num,:), Nj(Num)] = Anode(a); 
Out_Cat(count) = Num; 

end; 

end % end while eof 

(w******************** Output routine ********************** 

fprintf(fid_out,'\nVigilance = %f\n',Vig); 
fprintf(fid_out,'Gamma = %f; k = %f\n',Gamma,k); 
fprintf(fid_out,'Learning adjustment factor r = %f\n',r); 
fprintf(fid_out,'Maximum hypercube volume = %f\n',Hv_max); 

%save parameters for plotting purposes 

[P_ac(runs),P_cc(runs),N_icc(runs)] = stat(In_Cat,Out_Cat,fid_out); 

Values(runs) = Hv_max; 
Hv_max = Hv_max + 0.25; 
clear B category Nj R; % clear out all vars for next run 

end %while 

plots(Values,P_cc,N_icc,P_ac,'Hv_max'); 

saveit = input('Do you want to save all working variables ?','s'); 
if saveit == 'Y' | saveit == 'y' 

filename = input('Enter filename -> ','s'); 
filename = ['h:\matlab\sfam4V filename]; 
save(filename); 

end; 

fclose(fid_in); 
fclose(fidout); 
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